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Abstract. We present a detailed study of the recently conjectured infrared renormalization group limit cycle
in QCD using chiral effective field theory. It was conjectured that small increases in the up and down quark
masses can move QCD to the critical trajectory for an infrared limit cycle in the three-nucleon system. At
the critical quark masses, the binding energies of the deuteron and its spin-singlet partner are tuned to zero
and the triton has infinitely many excited states with an accumulation point at the three-nucleon threshold.
We exemplify three parameter sets where this effect occurs at next-to-leading order in the chiral counting.
For one of them, we study the structure of the three-nucleon system in detail using both chiral and contact
effective field theories. Furthermore, we investigate the matching of the chiral and contact theories in the
critical region and calculate the influence of the limit cycle on three-nucleon scattering observables.

PACS. 12.38.Aw; 21.45.+v; 11.10.Hi

1 Introduction

The renormalization group (RG) is an important tool in
many areas of physics. Its applications range from critical
phenomena in condensed matter physics to the nonpertur-
bative formulation of quantum field theories for elementary
particles [1]. The requirement of the invariance of low-
energy observables under changes of the ultraviolet cutoff
Λ generates a RG flow on the multidimensional space of
coupling constants g for operators in the Lagrangian:

Λ
d

dΛ
g = β(g) . (1)

Depending on the physical application, the RG flow can
be considered in the infrared (Λ→ 0) or in the ultraviolet
(Λ→∞) limits. The simplest solution to the RG equations
is a fixed point g∗ which satisfies β(g∗) = 0. An important
signature of an RG fixed point is scale invariance: symme-
try with respect to the coordinate transformation r→ λr
for any positive number λ. This symmetry implies that di-
mensionless variables scale as powers of the momentum
scale. Scale-invariant behavior at long distances, as in criti-
cal phenomena, can be explained by RG flow to an infrared
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fixed point. Scale-invariant behavior at short distances, as
in asymptotically-free field theories, can be explained by
RG flow to an ultraviolet fixed point.
However, RG equations can also exhibit more com-

plicated solutions. The possibility of RG flow to a limit
cycle was proposed by Wilson in 1971 [2]. A limit cycle is
a 1-parameter family of coupling constants g∗(θ) that is
closed under the RG flow and can be parametrized by an
angle 0< θ < 2π. The RG flow carries the system around
a complete orbit of the limit cycle every time the ultraviolet
cutoff Λ increases by some factor λ0. One of the signatures
of an RG limit cycle is discrete scale invariance: symme-
try with respect to the coordinate transformation r→ λn0 r
only for integer values of n.
Before the fundamental theory of the strong interac-

tions was known, Wilson had suggested that limit cycles
might be relevant to the high-energy behavior of the strong
interactions of elementary particles [2]. However, quantum
chromodynamics (QCD) and asymptotic freedomwere dis-
covered soon thereafter [3, 4] and the high-energy behavior
of the strong interactions was explained by an ultraviolet
fixed point in QCD. The low-energy structure of the strong
interactions, however, is much more complicated and not
dominated by the fixed point.
The low-energy sector can be described by exploit-

ing the approximate chiral symmetry of QCD using chi-
ral effective field theory (EFT) methods [5–8]. Chiral
EFT is a powerful tool for analyzing the properties of
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hadronic systems at low energies in a systematic and
model-independent way. It is formulated in an expansion
around the chiral limit of QCD which governs low-energy
hadron structure and dynamics. In chiral EFT’s the quark
mass dependence of the operators in the effective La-
grangian is included explicitly. Over the past 15 years,
considerable progress has been made in understanding the
structure of the nuclear force in this framework [9–14].
The quark mass dependence of the chiral nucleon–

nucleon (NN) interaction was studied with the primary
aim to understand the chiral limit of nuclear physics [15–
18]. While this question has not been fully resolved, these
studies found that the inverse scattering lengths in the
3S1–

3D1 and
1S0 channels both vanish if one extrapo-

lates away from the physical limit to slightly larger quark
masses.1 Subsequently, it was pointed out that QCD is
close to the critical trajectory for an infrared RG limit
cycle in the three-nucleon sector. This led to the conjec-
ture that QCD could be tuned to the critical trajectory by
small changes in the up and down quark masses away from
their physical values [19]. The proximity of the physical
quark masses to these critical values explains the success-
ful description of the low-energy three-nucleon problem in
terms of zero-range forces between nucleons initiated long
ago [20]. The effective-field-theory formulation of this pro-
gram exhibits an ultraviolet RG limit cycle [21]. The prox-
imity of physical QCD to the critical trajectory implies
that the ultraviolet limit cycle of [21] is not just an artifact
of the EFT but hints towards a limit cycle in QCD.
The connection between the limit cycle and three-

nucleon observables is established by the Efimov effect [22]
which occurs in the three-body sector of nonrelativistic
particles with a resonant short-range S-wave two-body
interaction. The strength of the interaction is governed
by the S-wave scattering length a. If a is large and posi-
tive, there is a shallow two-body bound state with binding
momentum κ = 1/a, if a is large and negative there is
a shallow virtual state characterized by the momentum
scale 1/|a|. Efimov showed that if |a| is much larger than
the range r0 of the interaction, there are shallow three-
body bound states whose number increases logarithmically
with |a|/r0. In the resonant limit a→±∞, there are in-
finitely many shallow three-body bound states with an
accumulation point at the three-body scattering thresh-
old. If the particles are identical bosons, the ratio of the
binding energies of successive states rapidly approaches
the universal constant λ20 ≈ 515. Efimov also showed that
low-energy three-body observables for different values of a
are related by a discrete scaling transformation in which
a→ λn0a, where n is an integer, and lengths and energies
are scaled by the appropriate powers of λn0 [22, 23]. The
mathematical connection between the Efimov effect and
RG limit cycles was first pointed out in [24].

1 Due to the nuclear tensor force, the 3S1 and
3D1 channels

are coupled. This mixing is included in the chiral EFT calcu-
lations, while it appears as a higher-order effect in the contact
EFT discussed below. For simplicity, we will only refer to the
3S1 and

1S0 partial waves in the following.

The Efimov effect can also occur for fermions with
at least three distinct spin or isospin states and there-
fore applies to nucleons as well. The spin-singlet and
spin-triplet np scattering lengths are a1S0 =−23.8 fm and
a3S1 = 5.4 fm. They are both significantly larger than the
effective range, which is r0 = 1.8 fm in the spin-triplet
channel. Efimov used this observation as the basis for
a qualitative approach to the three-nucleon problem [25].
A convenient implementation of this program is given by
the so-called pionless or contact EFT [12, 26]. Nucleons are
described as point particles with zero-range interactions
whose strengths are adjusted to reproduce the scattering
lengths a3S1 and a1S0 . The effective range and higher-order
terms in the low-energy expansions of the phase shifts
are treated as perturbations. This approach works well in
nuclear few-body systems dominated by momenta small
compared to Mπ. In the triton channel, the Efimov effect
makes it necessary to include a three-body force at lead-
ing order in the power counting [21]. The three-body force
can be fixed by using one three-body datum as input. All
other three-body observables can then be predicted. The
structure of this EFT is much simpler than the chiral EFT
and the computational effort is considerably smaller. Since
the contact EFT is based on an expansion around the limit
of infinite scattering length, it is particularly well suited to
describe processes governed by the large scattering length.
As a consequence, the chiral and contact EFT’s can mu-
tually complement each other. A first exploratory study
of the infrared limit cycle in QCD in the contact EFT
was carried out in [19]. The quark mass dependence of the
nucleon–nucleon scattering lengths from [18] was used as
input in this calculation.
In this paper, we study the possibility of an infrared

limit cycle in QCD in more depth. We use both chiral EFT
and pionless EFT and combine the strengths of both ap-
proaches. We use the chiral EFT to calculate the bound
state spectrum of the triton in the vicinity of the limit cycle
and study how well it is approximated by the contact EFT.
Furthermore, we calculate various three-body scattering
observables in pionless EFT and illustrate how they are af-
fected by the limit cycle.

2 Chiral effective field theory

The quark mass dependence of the chiral NN interaction
was calculated to next-to-leading order (NLO) in the chiral
counting in [15–18]. At this order, the quark mass depen-
dence is synonymous to the pion mass dependence because
of the Gell–Mann–Oakes–Renner relation:

M2π =−(mu+md)〈0|ūu|0〉/F
2
π , (2)

where 〈0|ūu|0〉 ≈ (−225MeV)3 is the quark condensate. In
the following, we will therefore refer only to the pion mass
dependence which is more convenient for nuclear applica-
tions and treat the pion mass as a parameter that can be
varied by adjusting the values of the quark masses. In the
work of [15–18], it was found that the scattering lengths in
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the 3S1–
3D1 and

1S0 channels both vanish in the pion mass
region around 200MeV.
In this work, we study the structure of the nuclear

three-body system in this region of pion masses around
200MeV. We will use the chiral NN potential constructed
from EFT using the method of unitary transformations [18].
To next-to-leading order (NLO) in the chiral power count-
ing, this potential can be written as

VNLO = V
OPE+V TPE+V cont , (3)

where V OPE, V TPE, and V cont refer to the one-pion ex-
change, two-pion exchange, and contact potentials, respec-
tively. They are given by the expressions

V OPE =−
1

4

g2A
F 2π

(
1+2∆−

4M2π
gA
d̄18

)
τ1 · τ2

(σ1 ·q)(σ2 ·q)

q2+M2π
,

(4)

V TPE =−
τ1 · τ2
384π2F 4π

{
L(q)

[
4M2π(5g

4
A−4g

2
A−1)

+q2(23g4A−10g
2
A−1)+

48g4AM
4
π

4M2π+q
2

]

+q2 ln
Mπ

Mphysπ

(23g4A−10g
2
A−1)

}

−
3g4A
64π2F 4π

(
L(q)+ ln

Mπ

Mphysπ

)

×

{
σ1 ·qσ2 ·q−q

2σ1 ·σ2

}
, (5)

V cont = C̄S+ C̄T (σ1 ·σ2)+M
2
π

×

(
D̄S−

3g2A
32π2F 4π

(8F 2πCT −5g
2
A+2) ln

Mπ

Mphysπ

)

+M2π

×

(
D̄T −

3g2A
64π2F 4π

(16F 2πCT −5g
2
A+2) ln

Mπ

Mphysπ

)

× (σ1 ·σ2)

+C1q
2+C2k

2+(C3q
2+C4k

2)(σ1 ·σ2)

+ iC5
σ1+σ2
2

· (k×q)+C6(q ·σ1)(q ·σ2)

+C7(k ·σ1)(k ·σ2) , (6)

with gA and Fπ the physical values of the nucleon axial
coupling and pion decay constant, respectively, and d̄18
a low-energy constant related to the Goldberger–Treiman
discrepancy [18]. The symbols σi (τi), i = 1, 2 indicate
the spin (isospin) operators for particle i and the C1,... ,7,
C̄S,T , and D̄S,T are low-energy constants (LEC’s) to be
determined from fits to nucleon–nucleon data. Further,
q denotes the momentum transfer of the nucleon, i.e.
q= p′−p, where p′ and p are final and initial nucleon
momenta, while k= (p′+p)/2. Here and in what follows
we denote the value of the variable pion mass by Mπ in
order to distinguish it from the physical value denoted by

Mphysπ = 139.6MeV. Furthermore,

L(q)≡ L(|q|) =

√
4M2π+q

2

|q|
ln

√
4M2π+q

2+ |q|

2Mπ
,

(7)

and∆ represents the relative shift in the ratio gA/Fπ com-
pared to its physical value:

∆≡
(gA/Fπ)Mπ − (gA/Fπ)Mphysπ

(gA/Fπ)Mphysπ

=

(
g2A

16π2F 2π
−
4

gA
d̄16+

1

16π2F 2π
l̄4

)

×
(
(Mphysπ )2−M2π

)
−
g2AM

2
π

4π2F 2π
ln
Mπ

Mphysπ

, (8)

where the low-energy constants d̄16 and l̄4 are defined as
in [18]. Note that in the TPEP, we only take into account
the explicitMπ-dependence and use the physical values for
gA and Fπ. This is sufficient at NLO since any shift in gA
and Fπ for a different value ofMπ in the TPE is a N

4LO ef-
fect. We also incorporate the leading isospin-breaking cor-
rections due to the pion mass difference in the one-pion
exchange potential [27] but do not consider an independent
variation ofmu−md.

The constants C̄S,T and D̄S,T are related to the CS,T
used in [28] via

CS,T = C̄S,T +(M
phys
π )2D̄S,T . (9)

Note further that the short-range terms of the type
M2π lnMπ in (6) result from the two-pion exchange as well
as from the renormalization of the leading-order contact
forces by pion loops. It is important to stress that renor-
malization of the LECs CS , CT , C1,... ,7 due to pion loops
does not depend on the pion mass and thus is of no rele-
vance for this work. The potential V (p′,p) is multiplied
by the regulating functions fR(|p|), fR(|p′|) in order to
cut off the large momentum components in the Lippmann–
Schwinger equation. In this study, we use the same ex-
ponential function fR(|p|) = exp[−p4/Λ4] as in [29] and
restrict ourselves to the cutoff Λ= 540MeV2.
In principle, these equations determine the pion mass

dependence of the chiralNN potential uniquely. However,
the extrapolation away from the physical pion mass gener-
ates errors. The dominating source are the constants C̄S,T
and D̄S,T which cannot be determined independently from
fits to data at the physical pion mass. A smaller effect is
due to the error in the LEC d̄16 which is enhanced in (8)
as one moves away from the physical pion mass. Both ef-
fects generate increasing uncertainties as one extrapolates
away from the physical point. Note also that we do not
include explicit∆(1232) degrees of freedom. It would be in-
teresting to see if and how our results would be modified in
a theory with explicit∆’s [12].

2 The cutoff dependence is mild in the very low-energy
regime, in which we are interested here. For a discussion of
larger cutoffs, see [30].
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Following [18], we use d̄16 =−1.23GeV−2, which is the
average of three values given in [31] (see also [32]). The
LEC d̄18 =−0.97GeV−2 is determined from the observed
value of the Goldberger–Treiman discrepancy while the
two remaining constants D̄S and D̄T are unknown. The
size of these two constants can be constrained from nat-
uralness arguments. In [18], it was argued that the cor-
responding dimensionless constants F 2πΛ

2
χD̄S,T can be ex-

pected to satisfy the bounds

−3≤ F 2πΛ
2
χD̄S,T ≤ 3 , (10)

where Λχ � 1 GeV is the chiral symmetry-breaking scale.
We note that [15–17] do allow for a larger variation of
these LEC’s. The LEC’s that we are going to choose be-
low are within our more restrictive range. Therefore, the
discussion on the appropriate scaling of the DS,T is not
relevant for this study. Furthermore, these bounds are in
agreement with resonance saturation estimates and simi-
lar conditions are obeyed by the known constants [33]. For
the constants CS,T , e.g., we find CS =−120.8GeV−2 and
CT = 1.8GeV

−2 corresponding to the dimensionless coef-
ficients F 2πCS =−1.03 and F

2
πCT = 0.02, respectively. The

unnaturally small value of F 2πCT is a consequence of the
approximateWigner SU(4) symmetry. (For a discussion of
this issue in the pionless EFT, see [45]).
The ranges from (10) were used to estimate the extrap-

olation errors of two-nucleon observables like the deuteron
binding energy and the spin-singlet and spin-triplet scat-
tering lengths in [18]. In the exploratory study of the three-
nucleon system [19], the mean values of these error bands
were used as input for the three-body calculations in the
contact EFT. Even though both scattering lengths were
large for the mean values, they did not become infinite at
the same value of the pion mass and there was no exact
limit cycle for this choice of parameters.
Here we take a different approach and search for sets

of values for D̄S and D̄T that lie within the bound given
by (10) and cause the spin-singlet and spin-triplet scatter-
ing lengths to become infinite at the same value of the pion
mass. For this purpose, it is more convenient to use the par-
tial wave projected constants

D̄3S1 = 4π
(
D̄S+ D̄T

)
,

D̄1S0 = 4π
(
D̄S−3D̄T

)
. (11)

The dimensionless constants α1S0 and α3S1 defined as

α1S0 = F
2
πΛ
2
χD̄1S0/(16π) and α3S1 = F

2
πΛ
2
χD̄3S1/(8π) ,

(12)

then satisfy the same bound as in (10), i.e.

−3≤ α3S1 ≤ 3 ,

−3≤ α1S0 ≤ 3 . (13)

The values of the parameters α3S1 and α1S0 can be cho-
sen independently anywhere in the above intervals without
violating naturalness and without affecting physics at the
physical value of the pion mass.

The values of the pion mass where the inverse scattering
lengths in the spin-triplet and spin-singlet channels van-
ish simultaneously are called critical pion massesM critπ . At
NLO in the chiral counting, it is possible to find param-
eter sets with critical pion masses in the range 175MeV <∼
M critπ

<
∼ 205MeV. For example, for the three exemplifying

values α3S1 =±2.5 and 0.0, we obtain the following critical
parameter sets:

(a) α3S1 =−2.5 and α1S0 = 2.138598 =⇒

M critπ = 197.8577MeV,
(b) α3S1 = 0.0 and α1S0 = 1.955709 =⇒

M critπ = 186.3276MeV,
(c) α3S1 = 2.5 and α1S0 = 1.776665 =⇒

M critπ = 179.0417MeV.

We note that it is unlikely that physical QCD will corres-
pond to any of the solutions (a)–(c). However, in [19] it was
conjectured that one should be able to reach the critical
point by varying the up- and down quark masses mu and
md independently because the spin-triplet and spin-singlet
channels have different isospin. A more detailed investiga-
tion is needed in order to test this conjecture. However,
many aspects of the limit cycle are universal and do not
depend on the exact parameter values [26]. Therefore, we
study the structure of the three-nucleon system near the
critical pion mass for solution (a) in the remainder of this
paper in more detail. The universal aspects of the three-
body observables do not depend on the details of the solu-
tion we choose.
The inverse scattering lengths in the spin-triplet and

spin-singlet channels in the vicinity of the limit cycle for
solution (a) are shown in Fig. 1. As promised, the inverse
scattering lengths vanish at the critical value of the pion
mass M critπ = 197.8577MeV. For pion masses below the
critical value, the spin-triplet scattering length is positive

Fig. 1. Inverse of the S-wave scattering lengths in the spin-
triplet and spin-singlet nucleon–nucleon channels for solution
(a) as a function of the pion mass Mπ. The vertical dotted line
indicates the critical pion massMcritπ
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and the deuteron is bound. As the inverse spin-triplet scat-
tering length decreases, the deuteron becomes more and
more shallow and finally becomes unbound at the criti-
cal mass. Above the critical pion mass the deuteron exists
as a shallow virtual state. In the spin-singlet channel, the
situation is reversed: the “spin-singlet deuteron” is a vir-
tual state below the critical pion mass and becomes bound
above. The pion mass dependence of the two scattering
lengths shown in Fig. 1 will be used as input for the calcu-
lations in the contact EFT in the next section.
From the solution of the Faddeev equations with so-

lution (a) for the NN potential, we obtain the binding
energies of the triton and the first two excited states in
the vicinity of the limit cycle (see [34] for details). The
binding energies are given in Fig. 2 by the circles (ground
state), squares (first excited state), and diamonds (sec-
ond excited state). The solid lines indicate the neutron–
deuteron (Mπ ≤M critπ ) and neutron–spin-singlet deuteron
(Mπ ≥M critπ ) thresholds where the three-body states be-
come unstable. Directly at the critical mass, these thresh-
olds coincide with the three-body threshold and the triton
has infinitely many excited states. The dashed lines are cal-
culations in the pionless theory and will be discussed in
detail below. The binding energy of the triton ground state
varies only weakly over the whole range of pion masses and
is about one half of the physical value at the critical point.
The excited states are influenced by the thresholds and
vary much more strongly.
In the remainder of this subsection, we calculate the ex-

pectation values of the 2N and 3N kinetic energies and
some properties of the 2N and 3N wave functions. While
these quantities are technically not observables, they shed
some light on the structure of the three-body states.
In Fig. 3, we show the expectation values of the ki-

netic energy for the triton ground and first excited states

Fig. 2. Binding energies B3 of the triton ground state and the
first two excited states as function of the pion mass Mπ. The
circles (ground state), squares (first excited state), and dia-
monds (second excited state) give the chiral EFT result, while
the dashed lines are calculations in the pionless theory. The
vertical dotted line indicates the critical pion mass Mcritπ . The
thresholds for the three-body states are given by the solid lines

Fig. 3. Kinetic energies of the triton ground state and the first
excited state indicated by the dashed lines compared to the
kinetic energies of the deuteron (Mπ <M

crit
π ) and the spin-

singlet deuteron (Mπ >M
crit
π ) indicated by the solid lines as

function of pion massMπ

and for the two-nucleon states as a function of the pion
mass Mπ. All expectation values are evaluated in the rest
frame of the corresponding states. The triton ground-state
kinetic energy stays fairly constant asMπ is varied. The ki-
netic energy of the first excited state, however, approaches
the kinetic energy of the two-nucleon bound state (the
deuteron forMπ <M

crit
π and the spin-singlet deuteron for

Mπ >M
crit
π ) near the value of the pion mass where the

triton excited state enters from the 2N–N continuum. As
a consequence, the third particle is essentially at rest in this
region. This behavior indicates that the first excited state
has a 2N–N cluster structure close to the 2N–N threshold.
A similar observation applies to the second excited state
which is not shown in the figure.
The 2N–3N wave function overlap for the triton

ground state and the first two excited states is shown in

Fig. 4. 2N–3N wave function overlap for the triton ground state
and the first two excited states as function of pion massMπ . The
vertical dotted line indicates the critical pionmassMcritπ
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Fig. 4 as function of pion massMπ. The overlap rapidly ap-
proaches zero as the pion mass reaches the critical value.
This is a consequence of increasing the size of the deuteron
(Mπ ≤M critπ ) and spin-singlet deuteron (Mπ ≥M

crit
π ) as

the critical point is approached from below and above,
respectively. Directly at the critical point, they are both
infinitely large. While new shallow three-body states ap-
pear at values of B3 that form a geometric series and differ
by factors of λ20 = 515 as M

crit
π is approached, the size of

a given three-body state remains finite (cf. Fig. 2). Conse-
quently, the overlap between 2N and 3N wave functions
vanishes at the critical point.
We have also calculated the probability for the D-wave

and mixed symmetry states in the triton ground state and
the first two excited states as function of pion mass Mπ.
These results will be discussed below in the context of the
contact EFT.

3 Contact effective field theory

In principle, one could calculate all three-nucleon observ-
ables in the vicinity of the critical pion mass in the chiral
EFT. However, the computational effort is significant, even
in the 3N system. Moreover, the calculations become in-
creasingly difficult for the shallow excited states near the
limit cycle. The physics near the limit cycle, however, can
also be described in the contact EFT for large scattering
length. This theory is formulated in an expansion around
the limit of two-body bound states at threshold corres-
ponding to vanishing inverse scattering lengths. It is much
simpler than the chiral EFT and does not contain pion de-
grees of freedom. Three-body calculations can typically be
carried out on a personal computer. Therefore, it is an ideal
tool to calculate physical observables in the critical region
where the scattering lengths are large. We note that the
contact EFT is universal and does not have the explicit
pion mass dependence. When the pion mass dependence
of the spin-triplet and spin-singlet scattering lengths (cf.
Fig. 1) as well as one three-body observable (cf. Fig. 2)
are taken from the chiral EFT calculation, the pion mass
dependence of other three-body observables can be cal-
culated. Therefore, it complements the chiral EFT study
from the previous section.
For practical purposes, it is convenient to write down

this theory in the Lagrangian formalism using so-called
“dibaryon” fields. In our case, we need two dibaryon fields:
(i) a field ti with spin (isospin) 1 (0) representing two nu-
cleons interacting in the 3S1 channel (the deuteron) and
(ii) a field sa with spin (isospin) 0 (1) representing two nu-
cleons interacting in the 1S0 channel [21]:

Lcontact =N
†
(
i∂t+

∇2

2M

)
N +

gt

2
t†i ti+

gs

2
s†a sa

−
gt

2

(
t†iN

T τ2σiσ2N +h.c.
)

−
gs

2

(
s†a N

Tσ2τaτ2N +h.c.
)

−
2MH

Λ2
N†
[
g2t (tiσi)

†(tjσj)

+
gtgs

3

(
(tiσi)

†(saτa)+h.c.
)

+ g2s(saτa)
†(sbτb)

]
N , (14)

where i, j are spin and a, b are isospin indices, M is the
nucleon mass, and gt, gs, and H are the bare coupling
constants. The σi(τa) are Pauli matrices acting in spin
(isospin) space. In the two-body sector, the exact solution
of the field theory can be obtained analytically [35]. Renor-
malization can be implemented by adjusting the two-body
coupling constants gt(Λ) and gs(Λ) as a function of the
ultraviolet momentum cutoff Λ such that the spin-triplet
and spin-singlet scattering lengths have the desired values.
Other two-body observables are then independent of Λ
and have the appropriate values up to corrections of order
r0/|a| and r0

√
M |E| where r0 is the range of the interac-

tion and E the typical energy.
In the three-body sector, the nonperturbative solution

of the field theory can be obtained by solving generalized
Skorniakov–Ter-Martirosian integral equations including
a three-body force numerically. These integral equations
have unique solutions only in the presence of an ultra-
violet cutoff Λ. The resulting predictions for three-body
observables, although finite, depend on the cutoff and
are periodic functions of ln(Λ) with period π/s0 where
s0 = 1.0062378... is a transcendental number. In [21] it
was shown that the quantum field theory could be fully
renormalized to remove the residual dependence on Λ in
the three-body sector by adding a three-body interaction
term to the Lagrangian density in (14). The dependence of
three-body observables on the cutoff decreases like 1/Λ2 if
the three-body coupling constant has the form [36, 37]

H(Λ) =
cos[s0 ln(Λ/Λ∗)+arctan(s0)]

cos[s0 ln(Λ/Λ∗)−arctan(s0)]
, (15)

for some value of Λ∗. With this renormalization, three-
body observables have well-defined limits as Λ→∞, but
they depend on the parameter Λ∗ introduced by dimen-
sional transmutation. Since H(Λ) is a periodic function
of ln(Λ), the renormalization of the field theory involves
an ultraviolet limit cycle. This EFT has succesfully been
applied to various nuclear three-body observables [12].
Higher order corrections can be calculated as well [38–41]
but are suppressed by r0/|a| and r0

√
M |E| near the exact

limit cycle. (For a recent formal study of the corrections in
repulsive partial waves, see [42].)
As discussed above, we take the pion mass dependence

of the spin-singlet and spin-triplet scattering lengths from
the chiral EFT calculation (cf. Fig. 1). The pion mass de-
pendence of the three-body parameter Λ∗ can be deter-
mined from matching the energy of the triton ground state
or one of its excited states (cf. Fig. 2). Since the higher-
order effects are generally smaller for the shallower states,
we match to the first excited state. The pion mass de-
pendence of all other three-body observables can then be
predicted to leading order in the power counting. In Fig. 5,
the circles give the value of Λ∗ obtained from the match-
ing procedure as a function of the pion mass. The pion
mass dependence of Λ∗ is well described by a fourth order
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Fig. 5. The three-body parameter Λ∗ determined from match-
ing the first excited state of the triton as a function of the pion
mass Mπ (circles). The dash-dotted line is a fourth order poly-
nomial fit, while the vertical dotted line indicates the critical
pion massMcritπ

polynomial fit indicated by the dash-dotted line. For pion
masses between 190 and 210MeV, the parameter Λ∗ varies
smoothly by about 15%. The 15% variation in Λ∗ corres-
ponds to a variation of the triton ground-state energy by
about 25% over the same range of pion masses. In the pre-
vious work of [19], the value of Λ∗ was approximated by
a constant since no three-body calculations with chiral po-
tentials were available.
We are now in the position to calculate the pion mass

dependence of the other three-nucleon observables. The
results for triton ground state and second excited state
are compared to the chiral EFT results in Fig. 2. The cir-
cles (ground state), squares (first excited state), and dia-
monds (second excited state) give the chiral EFT result,
while the dashed lines are calculations in the contact EFT.
We find good agreement between the chiral and contact
EFT calculations which is generally better for the shal-
lower states. The typical error is about 10% for the ground
state and below 1% for the second excited state. The first

Table 1. Binding energies B
(n)
3 of the triton excited states and their ratios at the critical pion mass.

The 2nd and 4th columns show the results from chiral EFT while the 3rd and 5th columns show the
results from contact EFT. The dashes indicate entries that have not been calculated, while the blank
entries are not defined

n B
(n)
3 [MeV] (chir.) B

(n)
3 [MeV] (cont.) B

(n−1)
3 /B

(n)
3 (chir.) B

(n−1)
3 /B

(n)
3 (cont.)

−1 1.8437×103 515.0
0 3.7736 3.5798 515.0
1 6.9504×10−3 6.9504×10−3 542.9 515.0
2 1.3287×10−5 1.3495×10−5 523.1 515.0
3 – 2.6202×10−8 – 515.0
4 – 5.0874×10−11 – 515.0
5 – 9.8779×10−14 – 515.0
6 – 1.9179×10−16 – 515.0

excited state is reproduced exactly because of the match-
ing procedure.
The pionless theory can also be used to calculate the

binding energies of the next few excited states in the criti-
cal region where it is very difficult to perform calculations
in the chiral EFT. Our results for the binding energies of
the first six excited states at the critical pion mass are com-
pared to the results from chiral EFT in Table 1. The 2nd
and 4th columns show the binding energies and ratios from
chiral EFTwhile the 3rd and 5th columns show the binding
energies and ratios from contact EFT, respectively. The
dashes indicate entries that have not been calculated, while
the blank entries are not defined. From the ratios of the chi-
ral EFT results it is evident that the first two excited states
are still influenced by higher-order effects such as the finite
range of the chiral potential. The exact ratio of 515.035...
will be reached for the shallower states, but their calcula-
tion in the chiral EFT is computationally very expensive.
The contact EFT, on the other hand, has an limit cycle in
the ultraviolet by construction. If the theory is tuned to the
critical point, the limit cycle is exact for all energies. The
ratio in the 5th column of Table 1 is therefore 515.035... for
all states. The contact theory is most accurate for the shal-
lower states where the chiral EFT also approaches a limit
cycle and becomes less accurate for the deeper states. Note
also that this theory predicts infinitely many deeper states
whose binding energies are beyond the range of validity of
this EFT. As an example, we have shown the state with
n=−1 in Table 1.
The binding energies of the excited states directly at

the critical point can also be obtained analytically from the
formula [22]

B
(n)
3 =

(
e2π/s0

)1−n
B
(1)
3 = (515.035...)

1−n B
(1)
3 ,

(16)

and the numerical results of the contact EFT are in good
agreement with this analytical formula.
If one is interested in small deviations from the ex-

act limit cycle, for example to calculate observables in the
critical region, precise numerical techniques are required.
Results with 5 digits of precision as in this work can be ob-
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tained in a straighforward way. Higher numerical accuracy
requires more advanced techniques as described in [43],
where three-body binding energies up to 12 digits of pre-
cision have been obtained for the bosonic problem. More-
over, the leading dependence of the three-body energies
on the physical ultraviolet cutoff, provided by the long-
range one-pion exchange in our case, was also given in [43]:
A renormalization group analysis suggests that the lead-
ing corrections to the three-body binding energies B

(n)
3

are of order
√
B2 ln(Λ)/Λ and B

(n)
3 ln(Λ)/Λ

2 relative to

B
(n)
3 itself. The first correction proportional to

√
B2 van-

ishes at the critical point. The second correction is qual-
itatively consistent with the results for the chiral EFT in
Table 1 and predicts a decreased value for B

(2)
3 /B

(3)
3 . How-

ever, the decrease is too strong and would lead to a ratio
B
(2)
3 /B

(3)
3 < 515, so other corrections must be important.

It is interesting to compare the probability for the D-
wave andmixed symmetry states in the chiral EFTwith the
expectations from the contact EFT. In Fig. 6, we show the
probability for the D-wave and mixed symmetry states in
the triton ground state and the first excited state as function
of pionmassMπ for the chiralEFT.Theprobabilities for the
second excited state have also been calculated but are not
shown. They behave similar to the first excited state. The
mixed symmetry probabilities in the triton excited states
become very small near the critical pionmass. This is a con-
sequence of theSU(4) symmetry at the critical point, which
leads to a decoupling of the mixed symmetry state [21].
In the chiral EFT, the SU(4) symmetry at the critical

point is exactly realized for the scattering lengths, but not
for the effective ranges. This suggests that the mixed sym-
metry component is induced in the contact EFT by higher-
order terms proportional to re

√
ME. The observed sup-

pression of the mixed symmetry component at the criti-
cal point is indeed consistent with this result of the power
counting. The probabilities decrease roughly by factors of
30, which is in the order of magnitude expected from the

Fig. 6. Probability of the D-wave and mixed symmetry states
for the triton ground state and the first excited state as function
of pion mass Mπ. The vertical dotted line indicates the critical
pion massMcritπ

binding energy ratios of the states. The strong enhancement
of the mixed symmetry state probabilities once the pion
mass is tuned away from the critical point is generated by
SU(4) breaking of the scattering lengths, which is a leading-
order effect in the contact EFT.We observe that the mixed
symmetry state is very large, for the excited states. Treating
SU(4) breaking interactions as a perturbation, this behav-
ior might be explained by the proximity of other (virtual)
excited states, which leads to an enhancement of the pertur-
bative contributions to the wave function.
For theD-state probabilities, similar observations hold.

However, since theD-state component is generated by sub-
leading interactions for all pion masses, we do not observe
the strong enhancement, once the pion mass is tuned away
from the critical mass. All D-state probabilities decrease
slowly with increasing pion mass. This indicates that the
tensor force becomes less important at larger pion masses.
This can be expected, since in the limit of very large pion
masses, the pion becomes a heavy degree of freedom, so
that the approximation by contact interactions becomes
more and more accurate.
The calculation of three-body scattering observables in

the contact EFT is also straightforward [12]. In Fig. 7, we
show results for the S = 1/2 and S = 3/2 neutron–deuteron
scattering lengths forMπ ≤M critπ . Above the critical pion
mass the deuteron ceases to exist, but the spin-singlet
deuteron becomes bound. For Mπ ≥M critπ , we also show
the S = 1/2 neutron-singlet deuteron scattering length.
The vertical dashed lines show where the second excited
state appears in the spectrum. The critical point is indi-
cated by the vertical dotted line.
All scattering lengths diverge at the critical point.

The S = 3/2 scattering length diverges because it is sim-
ply a constant times the spin-triplet scattering length:
1.179 a3S1 [20]. The S = 1/2 scattering lengths are very
sensitive to the appearance of new excited states at thresh-
old as the inverse two-body scattering lengths approach

Fig. 7. The S = 1/2 and S = 3/2 neutron–deuteron scatter-
ing lengths (Mπ ≤M

crit
π ) and the S = 1/2 neutron–singlet

deuteron scattering length (Mπ ≥M
crit
π ) as function of pion

mass Mπ . The vertical dotted line indicates the critical pion
mass Mcritπ while the vertical dashed lines show where the sec-
ond excited state appears in the spectrum
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zero. They jump from −∞ to +∞ whenever a new state
appears.
The possible existence of a limit cycle in the pion mass

region around 200MeV must also be taken into account in
future nuclear lattice calculations. If the pion mass is in the
critical region, three-body scattering observables will show
a strong pionmass dependence. Since, however, the physics
of the limit cycle can be captured using EFT methods as
demonstrated in this work, it should not render such cal-
culations impossible. One can simply rely on the EFT to
extrapolate through the critical region to physical pion
masses. A similar strategy was followed in a recent fully
dynamical lattice calculation of the nucleon–nucleon scat-
tering lengths [44].

4 Summary and conclusion

In this paper, we have performed the first study of the con-
jectured infrared limit cycle in QCD in the framework of
chiral EFT.Wehave exemplified three parameter sets in the
chiral EFT at NLO that lead to an infrared limit cycle for
pionmasses around 200MeV and investigated the structure
of three-body observables for one of these sets in detail.
Using both chiral and contact EFT’s, we have calcu-

lated the energies and structure of the triton ground state
and the first two excited states around the critical pion
mass. Furthermore, we have calculated the next four ex-
cited states and the neutron–deuteron and neutron–singlet
deuteron scattering lengths in the critical region. All three-
body scattering lengths diverge at the critical point. The
S = 1/2 scattering lengths are very sensitive to the appear-
ance of new excited states in the critical region.
Moreover, we have elucidated the consequences for fu-

ture three-body lattice QCD calculations. On the one
hand, scattering observables are very sensitive to new
three-body states appearing at threshold in the critical re-
gion. On the other hand, the energies of the three-body
states themselves and the triton ground-state energy in
particular change only very slowly as one passes through
the critical region. This suggests that chiral EFT could
be a reliable tool for extrapolations of lattice results from
unphysically large pion masses to the physical value.
The comparison of the chiral and contact EFT results

also showed that an accurate matching of both theories is
possible around the critical point. The small deviations of
the contact EFT predictions from the full chiral result were
in line with the expectations from the power counting of
the contact EFT. It is reassuring to confirm these expecta-
tions by an explicit calculation.
In summary, the main findings of [19] have been con-

firmed and extended. Future lattice studies promise inter-
esting insights into the rich structure of QCD. In particu-
lar, it would be very interesting to see signatures of the
limit cycle in lattice simulations of the three-nucleon sys-
tem with pion masses around 200MeV [46].

Acknowledgements. This work was supported by the U.S. De-

partment of Energy Contract No. DE-AC05-84ER40150 under

which the Southeastern Universities Research Association
(SURA) operates the The Thomas Jefferson National Accelera-

tor Facility, the EU Integrated Infrastructure Initiative Hadron
Physics under contract number RII3-CT-2004-506078, and the
Deutsche Forschungsgemeinschaft through funds provided to
the SFB/TR 16 “Subnuclear structure of matter”. The nu-

merical calculations have partly been performed on the JUMP
cluster of the NIC, Jülich.
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U.-G. Meißner, H. Witala, Phys. Rev. C 66, 064001 (2002)
[arXiv:nucl-th/0208023]

35. D.B. Kaplan, Nucl. Phys. B 494, 471 (1997) [arXiv:nucl-
th/9610052]

36. P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Rev.
Lett. 82, 463 (1999) [arXiv:nucl-th/9809025]

37. P.F. Bedaque, H.-W. Hammer, U. van Kolck, Nucl. Phys.
A 646, 444 (1999) [arXiv:nucl-th/9811046]

38. H.-W. Hammer, T. Mehen, Phys. Lett. B 516, 353 (2001)
[arXiv:nucl-th/0105072]

39. P.F. Bedaque, G. Rupak,H.W. Grießhammer, H.-W. Ham-
mer, Nucl.Phys.A714, 589 (2003) [arXiv:nucl-th/0207034]

40. I.R. Afnan, D.R. Phillips, Phys. Rev. C 69, 034010 (2004)
[arXiv:nucl-th/0312021]

41. H.W. Grießhammer, Nucl. Phys. A 744, 192 (2004) [arXiv:
nucl-th/0404073]

42. M.C. Birse, J. Phys. A 39, L49 (2006) [arXiv:nucl-th/
0509031]

43. R.F. Mohr, R.J. Furnstahl, R.J. Perry, K.G. Wilson,
H.-W. Hammer, Ann. Phys. 321, 225 (2006) [arXiv:nucl-
th/0509076]

44. NPLQCD Collaboration, S.R. Beane, P.F. Bedaque, K. Or-
ginos, M.J. Savage, Phys. Rev. Lett. 97, 012001 (2006)
[arXiv:hep-lat/060210]

45. T. Mehen, I.W. Stewart, M.B. Wise, Phys. Rev. Lett. 83,
931 (1999) [arXiv:hep-ph/9902370]

46. K.G. Wilson, Nucl. Phys. Proc. Suppl. 140, 3 (2005)
[arXiv:hep-lat/0412043]



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


